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Abstract. We investigate the non-equilibrium dynamics of spherical spin models with two-spin inter-
actions. For the exactly solvable models of the d-dimensional spherical ferromagnet and the spherical
Sherrington-Kirkpatrick (SK) model the asymptotic dynamics has for large times and large waiting times
the same formal structure. In the limit of large waiting times we find in both models an intermediate time
scale, scaling as a power of the waiting time with an exponent smaller than one, and thus separating the
time-translation-invariant short-time dynamics from the aging regime. It is this time scale on which the
fluctuation-dissipation theorem is violated. Aging in these models is similar to that observed in spin glasses
at the level of correlation functions, but different at the level of response functions, and thus different at
the level of experimentally accessible quantities like thermoremanent magnetization.

PACS. 05.20.-y Classical statistical mechanics – 75.10.Nr Spin-glass and other random models

1 Introduction

There exist many systems which exhibit relaxation times
long enough to keep them from reaching equilibrium on ex-
perimental time scales. Primary examples are spin glasses
and polymer glasses, but also systems as simple as the
Ising model when prepared in an arbitrary initial state,
or phase separation dynamics in systems with conserved
parameter such as Ostwald ripening in binary alloys. As a
consequence, the relaxation depends for all these systems
on the waiting time tw already spent in the low temper-
ature phase: the systems age. To understand the aging
phenomena observed in these models one has to investi-
gate their non-equilibrium dynamics.

In this context the investigation of the non-equilibrium
dynamics of spherical spin models with two-spin interac-
tions is interesting because they exhibit nontrivial dynam-
ical behaviour, despite their simplicity, which makes their
non-equilibrium dynamics exactly solvable. These systems
never reach equilibrium, hence correlation and response
functions depend on the waiting time even in the limit of
large times [6,7,9].

Our main aim is to complete for this class of models
the analysis of the spherical SK model presented in [9] by
identifying all relevant time scales of the problem. We are
going to show that, in addition to the two time regimes
found in [9], there exists an intermediate time scale tp � 1
satisfying tp/tw → 0 for tw → ∞. It is this intermedi-
ate time scale on which the fluctuation dissipation theo-
rem is beginning to be violated. Interest in this time scale
stems from the fact that a thorough understanding of the
dynamics at these intermediate times is important with
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respect to the study of the non-equilibrium dynamics in
models more complicated than those considered in the
present paper, such as that of the spherical p-spin glass
with p > 2, because it is the behaviour at the time scale
tp which determines the behaviour at the time scale tw in
a unique way. It is thus the key ingredient towards the so-
lution of the so far unsolved problem of selecting a unique
solution within an infinite family of time reparametriza-
tion covariant solutions on diverging time scales, as has
been demonstrated within a multi-domain crossover scal-
ing approach for the closely related problem of a slowly
dragged particle in a random potential [12]. The analysis
of the simple spherical spin models is presented here, be-
cause their behaviour at the intermediate time scale can
be studied analytically and in instructive detail.

Moreover we shall see that, despite the similarity of
these models to the more difficult case of the spheri-
cal p-spin glass, their dynamics is not spin glass dy-
namics. This has been realized for some time from
considerations concerning fluctuation dissipation ratios
or parametric plots of an integrated response versus
correlation (see e.g. [6,11]). Alternatively, one may look
at the thermoremanent magnetization (another form of
integrated response) as a quantity sensitive to the com-
plicated phase space structure, to distinguish spin glasses
from the simpler magnetic systems. While the thermore-
manent magnetization, when plotted against logarithmic
time, exhibits a waiting time dependent plateau in spin
glasses, this plateau is absent in the models considered
here.

We have organized our material as follows. In
Section 2 we introduce the models and briefly review
the general method for solving their non-equilibrium
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dynamics, as first presented in [9]. In Section 3 we spe-
cialize to the spherical SK model and to d dimensional
hyper-cubic spherical ferromagnets, which independently
of the dimension d of the latter, exhibit formally the same
type of long time non-equilibrium dynamics; exponents
describing the decay of correlation and response for the
latter vary, of course, with d. Time scales are identified
and analyzed in Section 4, while Section 5 contains a dis-
cussion of our results.

2 The model

We consider spherical spin models with two spin in-
teractions consisting of N continuous spins si(t), i =
1, . . . , N , which satisfy for all times t the spherical con-
straint

∑N
i=1 si

2(t) = N . The Hamiltonian of the system
is given by

H = −1
2

∑
i6=j

Jijsisj . (1)

The coupling matrix Jij is supposed to be an arbitrary
symmetric matrix. Denoting the eigenvalues of the matrix
J by ai, i = 1, . . . , N , the system of Langevin equations,
which describes the dynamics of the model, decouples in
terms of the projections sai(t) of the spins si(t) onto the
eigenvectors

∂tsai(t) = (ai − µ(t))sai(t)
+ hai(t) + ξai(t), i = 1, . . . , N, (2)

where hai(t) is the corresponding component of an ex-
ternal magnetic field and ξai(t) is thermal Gaussian
white noise with zero mean and correlation 〈ξai(τ +
tw)ξaj (tw)〉 = 2Tδijδ(τ). The parameter µ(t) is the
Lagrange multiplier enforcing the spherical constraint.
Henceforth we will use 〈·〉 to represent the average over the
thermal noise. If it were not for the Lagrange parameter
µ(t), the dynamics (2) would just be that of N indepen-
dent harmonic oscillators under the influence of thermal
noise. This means that solving the non-equilibrium dy-
namics of these models reduces to determining µ(t). It was
shown in reference [9] that for a given waiting time tw and
given time separation τ ≥ 0 the autocorrelation q(τ, tw) :=
1/N

[∑N
i=1〈si(τ + tw)si(tw)〉

]
J

and response function

r(τ, tw) := 1/N
[∑N

i=1 δ 〈si(τ + tw)〉/δhi(tw)|h=0

]
J

of
this class of models are in terms of

Λ(t) := exp
(

2
∫ t

0

ds µ(s)
)

(3)

given by

q(τ, tw) =
Λ(tw + τ/2)√
Λ(τ + tw)Λ(tw)

×
[
1− T

∫ τ

0

ds
Λ(tw + τ/2− s/2)

Λ(tw + τ/2)
〈〈exp(as)〉〉

]
(4)

and

r(τ, tw) =

√
Λ(tw)

Λ(τ + tw)
〈〈exp(aτ)〉〉, (5)

where we have specialized the expressions in [9] to the case
of zero external field and constant temperature T and have
chosen the initial condition to be sai(t = 0) = 1. By [·]J we
have denoted a possible disorder average and by 〈〈·〉〉 we
denote the integration

∫
daρ(a)· over an eigenvalue density

ρ(a) which in the thermodynamic limit N →∞ describes
the distribution of eigenvalues of the coupling matrix J .
The quantity Λ(t) itself is determined by

Λ(t) = 〈〈exp(2at)〉〉+ 2T
∫ t

0

dsΛ(s)〈〈exp(2a(t− s))〉〉,
(6)

which together with (4) immediately implies Λ(0) =
q(0, tw) = 1. Another dynamical observable we will
be interested in is the thermoremanent magnetization
mr(τ, tw). Given that the system is kept in a small mag-
netic field h in the time interval [0, tw] , the magnetization
measured at time τ + tw is given by

mr(τ, tw) = h

∫ tw

0

ds r(τ + s, tw − s). (7)

For models such as the d dimensional ferromagnets consid-
ered in what follows, in which the interaction matrix has a
geometrical structure, off-diagonal correlations of the form
qij(τ, tw) = 〈si(τ + tw)sj(tw)〉 are of course also of inter-
est. We have not investigated them in the present paper,
however, as our main interest here is in results which will
have further bearing on spin glass models of the mean field
type.

3 Spherical SK model and spherical
ferromagnet

While the expressions given so far are valid for any choice
of the coupling matrix J we now want to treat two special
cases. Our aim is to solve the non-equilibrium dynamics of
these particular models in the limit of large waiting times
tw � 1 by explicitly determining Λ(t). As we are only
interested in the behaviour of the dynamical observables
for times τ, tw � 1 it is sufficient to determine the asymp-
totic behaviour of Λ(t) for t� 1. In the following we will
discuss the d-dimensional spherical ferromagnet and the
spherical SK model. The latter is the special case p = 2 of
the disordered spherical p-spin model and we will present
the results found in [9] in a slightly different form.

In the case of the spherical ferromagnet we consider
a d-dimensional hyper-cubic lattice with periodic bound-
ary conditions, whose lattice constant we take to be unity
and whose lattice sites with coordinate vectors xi are oc-
cupied by spins si. The couplings are chosen to be ferro-
magnetic nearest neighbour interactions, whose strength
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is set to unity. The standard diagonalization procedure us-
ing Fourier modes [3] yields for this choice of the matrix J
in the limit N → ∞ for the spectrum of eigenvalues and
the eigenvalue density ρfm(a) the result

ρfm(a) =
1
π

∫ ∞
0

dy cos(ay) [J0(2y)]d , a ∈ [−2d, 2d],

(8)

where J0(y) denotes the Bessel function of zeroth order.
The spherical SK model is defined by choosing the cou-

pling matrix J to be a random matrix whose entries Jij are
independent and identically distributed Gaussian random
variables with zero mean and variance [(Jij)2]J = 1/N . A
general result of random matrix theory [17] states that,
for this choice of J , the eigenvalue density in the ther-
modynamic limit ρsk is given by the Wigner semi-circle
law

ρsk(a) =
1

2π

√
4− a2 a ∈ [−2, 2]. (9)

Solving the non-equilibrium dynamics of these models
means solving (6) for the eigenvalue densities (8, 9).
This is best done using the Laplace transform Λ̃(s) =∫∞

0 dtΛ(t) exp(−st) to obtain from (6) for t > 0 the
relation

Λ̃(s) =
f̃(s)

1− 2T f̃(s)
, (10)

where the function f̃(s) := 〈〈1/(s− 2a)〉〉 is characteristic
of the given model. In terms of the function f(t), which
yields f̃(s) via Laplace transformation, the expressions (4)
and (5) can be rewritten as

q(τ, tw) =
Λ(tw + τ/2)√
Λ(τ + tw)Λ(tw)

×
[
1− 1

2
T

∫ 2τ

0

dx
Λ(tw + τ/2− x/4)

Λ(tw + τ/2)
f(x/4)

]
,

(11)

and

r(τ, tw) =

√
Λ(tw)

Λ(τ + tw)
f(τ/2), (12)

respectively. Inserting the expressions for the eigenvalue
densities (8) and (9) in the definition of f̃(s) we find that
in the case of the spherical ferromagnet the function f(t)
is given by

f fm(t) = [I0(4t)]d, (13)

while for the spherical SK model it is calculated to be

f sk(t) =
I1(4t)

2t
· (14)

In these expressions I0(t) and I1(t) denote the modified
Bessel function of zeroth and first order, respectively.

The critical temperature of the dynamic phase transi-
tion is found from (10) to be

Tc =
1

2f̃(2am)
, (15)

where am denotes the maximal eigenvalue of the
eigenvalue spectrum [−am, am] of the corresponding
model. In the special cases considered here we have
afm
m = 2d and ask

m = 2. Expression (15) implies in
the case of the spherical ferromagnet that we get a
phase transition in d > 2 only. For the spherical SK
model the critical temperature can be calculated ex-
plicitly and one finds T sk

c = 1. These results are in
both models in agreement with the ones obtained from
static calculations of the transition temperature [4,15].

In the following we will only be interested in the low
temperature phase with T < Tc. In this phase the asymp-
totic behaviour of Λ(t) for large times t is determined by
the behaviour of the Laplace transform Λ̃(s) at the right
bound s = 2am of the branch cut. In the case of the spher-
ical SK-model the inverse Laplace transformation can be
done exactly and the result found in [9] reads

Λsk(t) =
1
T

∞∑
k=1

kT k
Ik(4t)

2t
· (16)

For the spherical ferromagnet there is no simple analytic
expression, but we can find the leading asymptotic be-
haviour for t� 1 in integer dimension d > 2 by expanding
Λ̃(s) around s = 2am and performing the inverse Laplace
transformation. Performing this calculation and compar-
ing the result with the leading order of expression (16) for
large times t� 1, we find that in both models the leading
asymptotic behaviour of Λ(t) for t� 1 can be written as

Λ(t) ' Λ0

(1− T/Tc)2

e2amt

tνs
t� 1, (17)

where the prefactor Λ0 is given by Λfm
0 = (8π)−νs for

the spherical ferromagnet and by Λsk
0 = (32π)1−νs for the

spherical SK model. The exponent νs appearing in these
expressions is νfm

s = d/2 for the spherical ferromagnet and
νsk

s = 3/2 for the spherical SK model. In the same way it
follows from (13) and (14) that the asymptotic behaviour
of f(t) can in both models be written as

f(t) ' Λ0
e2amt

tνs
t� 1, (18)

with the same factor Λ0 as in (17). These two formulas
indicate already the close correspondence of the asymp-
totic behaviour of autocorrelation and response function
in both models which we will study in more detail in the
following section. We will see that we can write the ex-
pressions for these dynamical observables for both models
in a unified way using the exponent νs defined above. This
means in particular that we will find the same time scales
appearing in the limit of large waiting times tw and large
time separations τ .



534 The European Physical Journal B

4 Asymptotic dynamics and time scales

Before entering the discussion of the asymptotic behaviour
for large waiting times tw, we want to present for later ref-
erence the expressions for correlation and response func-
tion for finite waiting time tw ∼ 1 and large times τ � 1.
Using (17) and (18) in the terms containing the time vari-
able t in (11) and (12) we obtain for the autocorrelation

q(τ, tw) ∼ fq(tw)τ−νs/2 τ � tw ' 1, (19)

where fq(tw) ' 1 for tw ∼ 1, and for the response

r(τ, tw) ' fr(tw)τ−νs/2 τ � tw ' 1, (20)

where again fr(tw) ∼ 1.
We are, however, mainly interested in the case of large

waiting times tw � 1 and large time separations τ � 1. In
this case we can insert the asymptotic expansions (17, 18)
in expressions (11, 12) and get for τ, tw � 1

q(τ, tw) '

(
1 + τ

tw

)νs/2(
1 + τ

2tw

)νs

×

1− 1
2
T

∫ 2τ

0

dxe−amx/2
f(x/4)(

1− x
4tw(1+τ/2tw)

)νs


(21)

for the leading asymptotic behaviour of the autocorrela-
tion and

r(τ, tw) ' b
(

1 +
τ

tw

)νs/2

τ−νs (22)

for the response. The prefactor b is bfm = (4π)−νs in the
case of the ferromagnet and bsk = (4π)1−νs for the SK
model. These equations show that the asymptotic dynam-
ics in the limit τ, tw � 1 of the spherical ferromagnet and
the spherical SK model possesses the same formal struc-
ture. In particular we find that the scaling behaviour of
the dynamical observables autocorrelation and response
of the spherical ferromagnet in d = 3 and the spherical
SK model is equivalent (on the level of exponents). This
result was independently stated in [6]. The formal corre-
spondence of the two models implies in particular that in
both models the same characteristic time scales appear.

Before entering the discussion of the relevant time
scales in the problem, let us simplify expression (21) fur-
ther. Expanding the denominator of the integrand in this
expression in a power series, one can prove that in the
limit of large waiting times tw � 1 the dominant contri-
bution to the integral comes for all times τ � 1 from the
zeroth order term of the expansion. Defining

qp := 1− T

2

∫ ∞
0

dx e−amx/2f(x/4) = 1− T

Tc
, (23)

where the last equality follows from (15), we find

q(τ, tw) '

(
1 + τ

tw

)νs/2(
1 + τ

2tw

)νs

(
qp + c0τ

1−νs
)

(24)

for the leading behaviour of the autocorrelation in the
limit τ, tw � 1, in which c0 = bT/(νs − 1).

Using (22) and (24) it is now straightforward to iden-
tify the different time scales of the problem. At first sight
we find the two time scales already discussed in [9] for
the case of the spherical SK model. The first is the time
scale t0 ∼ 1 of the microscopic relaxation. At the upper
end of this scale we have τ � 1 but still τ/tw � 1, such
that we can neglect all waiting time dependent correc-
tions. On this time scale the dynamics corresponds to the
dynamics in equilibrium, i.e. it is time translation invari-
ant with autocorrelation q(τ, tw) = q̃0(τ0) and response
r(τ, tw) = r̃0(τ0) being functions of the scaling variable
τ0 := τ/t0 only, and autocorrelation and response sat-
isfy the FDT −∂τ q̃0(τ0) = T r̃0(τ0) of equilibrium dynam-
ics. Therefore we will refer to this time scale as the FDT
regime. At the upper end τ0 � 1 of this scale the response
is found from (22) to be

r(τ, tw) = r̃0(τ0) ' b̂0τ−νs
0 , (25)

with b̂0 = bt−νs
0 , while (24) implies for the correlation

q(τ) = q̃0(τ0) ' qp + ĉ0τ
1−νs
0 (26)

with ĉ0 = c0t
1−νs
0 . This corresponds to a power law decay

of the correlation to a plateau value qp, which in the case
of the spherical ferromagnet is just the square of the static
spontaneous magnetization 〈si〉2 [4], while in the case of
the spherical SK model it is the static Edwards-Anderson
parameter qEA =

[
〈si〉2

]
J

[9,15]. The exponent of the
decay is

ν0 := 1− νs (27)

which in the case of the spherical SK model is just the
special case p = 2 of the result found in [8] for the equilib-
rium decay of the correlation of the spherical p-spin glass.
If we speak of a plateau in the correlation, it is of course
understood that this plateau in the autocorrelation is only
visible in a plot against the logarithm of time τ .

The second obvious time scale is the waiting time it-
self. For τ ∼ tw correlation and response can be written
as functions of the scaling variable τw := τ/tw and one
finds asymptotically for τw � 1 power law decays of the
dynamical observables to zero [9].

From (22) it is obvious that these two are the only
time scales which can be identified from the behaviour of
the response function. However, it turns out that there ex-
ists a further nontrivial time scale in the problem, which
can be identified from the autocorrelation function. Look-
ing at expression (24) and taking into account the lead-
ing waiting time dependent correction in the prefactor we
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arrive at

q(τ, tw) '
(

1− νs

8

(
τ

tw

)2
)(

qp + c0τ
1−νs

)
. (28)

This expression shows that there exists a waiting time
dependent scale tp(tw), on which the correlation begins to
decay away from the plateau value qp. To be more precise,
we define this time scale tp by requiring q(tp, tw) = qp,
such that tp corresponds to the middle of the plateau of
the correlation function. This means that tp is the time
for which the competing corrections in (28) are of the
same order of magnitude. Hence we find that the time
scale tp(tw) scales as

tp(tw) ∼ tw2/(1+νs) � tw (29)

with the waiting time tw. The latter inequality follows as
νs > 1. The plateau regime corresponding to time scale tp
is the so far missing link between the stationary dynamics
within the FDT regime and the non-stationary dynamics
for times of the order of the waiting time tw itself. We will
shortly see that it is in particular the time scale on which
the FDT of equilibrium dynamics is violated.

In terms of the scaling variable τp := τ/tp, the
correlation within the plateau regime τ ∼ tp can be
expressed in the scaling form

q(τ, tw) = qp + q̂p(tw)q̃p(τp) (30)

with the prefactor q̂p(tw) = t
−2(νs−1)/(νs+1)
w ∼ tν0

p and the
scaling function

q̃p(τp) ' c0τν0
p + cpτp

ν1 (31)

in which cp = − νs
8 qp and ν1 = 2 (recall that ν0 = 1 −

νs < 0). This scaling function describes the decay of the
correlation towards qp at the lower end of the plateau
scale, i.e. for τp � 1, and its subsequent decay away from
qp at the upper end of the plateau scale where τp � 1.

In order to study the violation of the FDT we intro-
duce a quantity n(τ, tw) which characterizes this violation
quantitatively [12] via

−∂τ q(τ, tw) =: T (1 + n(τ, tw))r(τ, tw). (32)

Note that differentiating with respect to the time sep-
aration is equivalent to differentiating with respect to
the later time t. Alternatively one may differentiate with
respect to the earlier time tw. In the representation of the
correlation in terms of tw and time difference τ = t − tw
this gives rise to the corresponding definition

∂̂twq(τ, tw) =: T (1 + nw(τ, tw))r(τ, tw), (33)
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Fig. 1. 1 + n(τ, tw) and 1 + nw(τ, tw) as functions of τ for
tw = 1010. Vertical arrows mark the plateau scale tp(tw) and
the waiting time scale tw.

with ∂̂tw = ∂tw−∂τ . The latter is related to the fluctuation
dissipation ratios X(τ, tw) studied e.g. in [6,11] via
X(τ, tw) = 1/(1 + nw(τ, tw)). For τ, tw � 1 we get

1 + n(τ, tw) ' 1(
1 + τ

2tw

)νs

×

1 +
νsqp
4bT

τ1+νs

t2w

1(
1 + τ

tw

)(
1 + τ

2tw

)
 ,

(34)
1 + nw(τ, tw) ' 1(

1 + τ
2tw

)νs

×

1 +
νsqp
4bT

τ1+νs

t2w

1(
1 + τ

2tw

)
 .

(35)

Figure 1 shows these two functions for T = 0.6Tc, and
tw = 1010 so that tp = 108. As we have seen before, the
decay towards the plateau satisfies the FDT, that is, we
have in leading order n(τ, tw) = nw(τtw) = 0 for τ � tp.
On the intermediate time scale tp = t

2/(1+νs)
w , however, we

obtain the scaling form

n(τ, tw) ' nw(τ, tw) ' ñ(τp) =
νsqp
4bT

τp
1+νs , (36)

which approaches zero at the lower end of the plateau
scale (where the FDT holds) but is non-zero (indicat-
ing FDT violation) for all τp = O(1), and exhibits a
power law divergence at the upper end of the tp scale.
This can be traced back to the fact that the behaviour
of the response function r(τ, tw) does not change on the
time scale tp whereas that of the correlation does. It is
this divergence which is responsible for the fact noted in
[6,11] that parametric representations of integrated re-
sponse χ(τ, tw) =

∫ τ
0

ds r(s, tw + τ − s) versus correla-
tion q(τ, tw) saturate at the value χ = (1 − qp)/T for



536 The European Physical Journal B

q(τ, tw) ≤ qp for the models considered in the present
paper. Note that the nature of this divergence is in the
large tw limit of course not detectable in such parametric
plots, as it occurs entirely on the plateau scale, on which
q(τ, tw) is basically arrested at qp. It may however be ob-
tained from the finite tw-corrections to such plots which
may be extracted from (34) and (35).

Note that (34) and (35) imply that n and nw exhibit
different scaling on the tw scale. With τw = τ/tw we have

1 + n(τ, tw) ' 1
(1 + τw/2)νs

×
[
1 +

νsqp
4bT

tνs−1
w τ1+νs

w

1
(1 + τw) (1 + τw/2)

]
, (37)

1 + nw(τ, tw) ' 1
(1 + τw/2)νs

×
[
1 +

νsqp
4bT

tνs−1
w τ1+νs

w

1
(1 + τw/2)

]
,

(38)

implying that both are infinite in the tw → ∞ limit, but
show different behaviour at large τw when tw is large but
finite: Whereas 1 + n(τ, tw) ' νsqp

bT (2tw)νs−1 τ−1
w → 0 as

τw → ∞, we have 1 + nw(τ, tw) ' νsqp
bT (2tw)νs−1 in the

same limit.
To summarize, the FDT is broken already on the time

scale tp rather than only on the scale tw, the former being
much smaller than the latter when tw becomes large, since
tp/tw → 0 as tw →∞. Moreover, the divergence of n and
nw on the tp scale implies that the QFDT solution, which
was found in [8] for the spherical p-spin glass with p > 2
and in [14] for manifolds in disordered potentials, does
not exist in the case of the spherical SK model (and in
the ferromagnetic systems). From (28) it is also obvious
that for the models considered here the plateau regime tp
is the only further time scale in the problem. This, too, is
in contrast to the expectations for spherical p-spin glass
with p > 2, which will be considered in a forthcoming
paper [13].

5 Discussion

Considering the simplicity of the models discussed in the
previous sections, the complexity of the dynamical be-
haviour seems rather astonishing. However, in the case
of spherical ferromagnet the explicit dependence on the
waiting time of both correlation and response even in the
limit τ � tw � 1 is a well-known result in the theory
of phase ordering kinetics [7]. According to the scaling
hypothesis of coarsening dynamics there exists for large
times t = τ + tw � 1 a single length scale L(t) in
the system, which can be interpreted as the typical size
of a domain at time t. This means that for large times
t� tw � 1 the two-time-autocorrelation function of such
a system is a function of the ratio of the two length scales
L(t) � L(tw) � 1 only. The exact solution of the phase

ordering dynamics of the spherical ferromagnet yields for
the autocorrelation at T = 0 in the limit of large times
the result [7]

q(t− tw, tw) =
(

4ttw
(t+ tw)2

)d/4
, (39)

which is just equation (21) for T = 0.
It has been noted that aging behaviour in the corre-

lation functions of coarsening systems has a simple inter-
pretation in terms of domain growth [5–7,11]. This holds
in particular for the emergence of the plateau scale. After
the system has spent the waiting time tw � 1 in the low
temperature phase, an arbitrary spin will on average be
found in a domain of size L(tw). The autocorrelation of
this spin will for short times decay towards qp, which is
the square of the local spontaneous magnetization, due to
spin fluctuations within this domain. This decay is equiv-
alent to a decay within a local equilibrium state and sat-
isfies time translational invariance and FDT. The further
asymptotic decay of the autocorrelation away from this
value qp towards zero can only be produced by a change
of the environment of the chosen spin, which means that
a domain wall has to pass by its site. As the size of the
original domain grows as a power of the waiting time, it is
very plausible that the time spent near the plateau value
should also grow as a power of the waiting time. Since
the growth of the domains and therefore the wandering of
the domain walls is a slow process the asymptotic decay
towards zero is also a slow power law decay. For the spher-
ical SK model, such arguments are of course not available,
as the model does not possess a geometry.

At the heart of it, the formal equivalence of the asymp-
totic dynamics for τ, tw � 1 of the spherical ferromagnet
and the spherical SK model is due to the fact that both in-
teraction matrices exhibit eigenvalue densities ρ(a) whose
behaviour at the upper end am of the spectrum can be
characterized by a power law

ρ(a) ∼ (am − a)νs−1, as a→ am , (40)

with the exponent νs introduced earlier. It is this fea-
ture which determines the behaviour of correlation and
response in these systems at τ, tw � 1. The origin of the
power law may be disorder, as in the case of the SK model
and the semi-circle law, but it need not, as exemplified
by the d-dimensional ordered systems. Thus aging in the
spherical SK model cannot be interpreted as spin glass
aging as it is observed experimentally [1,2,16] as well as
in model calculations [10] and simulations [18]. Indeed, it
is well known that from a static point of view this model
does not have the properties of a typical spin glass, as it
has a replica symmetric solution for all temperatures and
does not possess many degenerate ground states. The re-
sults above imply that the spherical SK model is neither
a spin glass from a dynamical point of view, despite the
existence of a plateau in the correlation function as it is
observed in spin glasses and related systems [8,12].

Obviously the autocorrelation is not a suitable quan-
tity to distinguish aging in a spin glass from the simpler
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case of coarsening dynamics in magnetic systems, whose
nonequlibrium dynamics is determined by domain growth.
A dynamical observable which characterizes a spin glass,
however, is given by the thermoremanent magnetization
defined in (7). This is due to the fact that it is the re-
sponse function which is most sensitive to the complex
phase space structure exhibited by spin glasses. To be
more precise, the particular metastable configurations of a
spinglass depend strongly on a magnetic field. During the
waiting time the system is expected to move to configu-
rations of increasing stability. On the other hand, a state
which is relatively stable in a given field might become less
stable if the field is slightly changed. This means that, af-
ter a change of the field at tw, the system has to move to
new states of increasing stability. The time scale of this
process depends on the degree of stability reached at tw.
This leads to a plateau in the thermoremanent magnetiza-
tion similar to the one found in the correlation function.
This will be derived for the spherical p-spin glass with
p > 2 in a forthcoming paper [13]. A mechanism of this
kind is of course absent in a coarsening system and as a
consequence mr(τ, tw) decays in the limit of large waiting
times tw � 1 for all τ � tw as

mr(τ, tw) ∼ τ1−νs . (41)

To prove this result, let us denote by t1(tw) a lower bound
of the waiting time scale satisfying τ � t1 � tw. Let us
further choose a time t2, such that tw − t2 ∼ 1. Then we
can split the integration in (7) as follows

mr(τ, tw) ' h
(∫ t1

0

ds r(τ + s, tw)

+
∫ t2

t1

ds r(s, tw − s) +
∫ tw

t2

ds r(s, tw − s)
)
.

(42)

Using (25) in the first integral we find that this term
yields the leading order contribution given in (41) as the
contribution from the upper bound is negligible in the
limit tw � 1. In the last integral in (42) the argument
tw − s is always of order unity and with (20) we find
that it scales as tw

−νs/2 with the waiting time, such
that it is negligible in the limit of large waiting times.
Thus we just have to consider the contributions from
the middle of the integration range for the remaining
integral in (42). Rewriting this integral in terms of the
scaling variable σ := s/tw we get using (22) that this
term scales as tw1−νs which leads to (41) as the dominant
contribution. Hence we have indeed found that in the
type of models considered here the thermoremanent
magnetization does not exhibit a plateau in the limit
tw � 1 nor does it depend on the waiting time for
all times t � tw. For coarsening systems this is what
we expected as this relaxation stems from spin fluc-
tuations within a certain domain, which do not know

anything about the waiting time. As noted in [6,11] an
alternative criterion to distinguish aging in coarsening
systems from spin glass aging is the integrated response
χ(τ, tw) mentioned in Section 4. Both, the saturation of
χ(τ, tw) and the absence of a plateau in the thermorema-
nent magnetization are due to the same reason, namely
due to the divergence of the function n(τ, tw), equivalently
due to the vanishing of the fluctuation dissipation ratio
X(τ, tw) on the plateau scale.

Let us finally stress that the time scale tp also appears
in the more complicated case of the spherical p-spin glass
with p > 2, the spherical SK model being just the simplest
of this class of models, and it is the behaviour of corre-
lation and response on this time-scale which is needed to
uniquely fix the dynamics at later times. This will be ex-
plicitly shown in a forthcoming paper [13].

It is a pleasure to thank H. Kinzelbach for numerous illumi-
nating discussions.
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